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Overview

• November 1st 2019 - September 30st 2022.
• Percent complete: 90%

Timeline Barriers

PartnersBudget
• Funding for FY 20: $650K
• Funding for FY 21: $650K
• Funding for FY 22: $650K

Support for this work from the Office of Vehicle Technologies, DOE-EERE, is gratefully acknowledged – Brian Cunningham
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• Oak Ridge National Laboratory
• National Renewable Energy Laboratory
• Colorado School of Mines

• Silicon (Si) has limited lifetime, preventing 
commercialization.

• Solid electrolyte interface (SEI) growth leads to 
loss of lithium inventory.

• Engineering Si SEI formation and properties via 
novel electrolytes requires understanding the SEI 
reaction mechanisms



Relevance
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• Silicon/NMC Performance Targets
– Cell Level Energy Density: >350 Wh/kg, 750 Wh/L
– Calendar Life: >5 years
– Cycle Life: >1000 cycles

• Current Si anodes show calendar and to a lesser extent cycle life 
(1000-2000 cycles) limitations.

• Parasitic currents due to unabated SEI growth from both 
chemical and mechanical instability lead to loss of lithium 
inventory.

Silicon Consortium Datasets

SEI film growth mechanisms and composition variations can 
be determined through coupled computational models bridging 
atomistic to continuum scales and give insights into novel Si 
electrolyte formulations for stable film growth.



Computational model collaboration bridges length and time scales to simulate SEI dynamics

Atomistic simulations, machine learning, and reaction
networks identify and characterize the paths and
mechanisms that form key SEI species

Continuum modeling incorporates atomistically predicted
mechanisms and is experimentally validated to identify
strategies for stable SEI growth



A Massive Framework to automatically explore millions of possible SEI reactions

High-performance  computing Analyses of reaction network
Microkinetic models

I

II IV

III

ML to reduce target fragments, 
recombination molecules and barriers

V

Transition states (Schrodinger Inc.)



Accelerating discovery of reaction mechanisms via machine learning

• Goal: leverage machine learning surrogate models to pinpoint the chemical reaction space that needs further 
investigation
ü Rapid estimation of reaction thermodynamic and kinetic properties 
ü Identifying thermodynamically and kinetically favorable molecules formed via recombination  

Chemical reaction ‘fingerprinting’ using a graph 
convolutional neural network that maps a reaction 
energy to its fingerprints. 

Approximation of chemical reaction 
properties – reaction energy and activation 
energy – from fingerprints.



Global and atomistic reaction mechanisms to simulate SEI formation at the continuum scale

Atomistic Reaction Pathway

Global Reaction Pathway

Predicts SEI species
composition, film 
thickness, leakage 
currents



Automatic retrieval of electrochemical reduction pathways of Li+-EC to LEDC

5/5/22

7

H2O Li PF6 EC

H OH O P  F C  OC  O C  C

Li/Li+ potential

Li2O

LiFLiOH

LEDC

Li2CO3

H2O Li+ PF6- EC

Li, T. & Balbuena, P. B. Theoretical studies of the reduction of ethylene carbonate. Chem. Phys. Lett. 317, 421–429 (2000).; Wang, Y. X., 
Nakamura, S., Ue, M. & Balbuena, P. B. Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries:
reduction mechanisms of ethylene carbonate. J. Am. Chem. Soc. 123, 11708–11718 (2001).

Li2BDC

LEDC
Constructed network with 6000 species, 4.5 mil. Reactions

First electrochemical reaction network
By far the largest electrochemical network ever reported
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Previously proposed

Novel

Transient Li stabilization

LEDC

• Identified pathways to well-
studied SEI product lithium 
ethylene dicarbonate (LEDC)
• Recovered expert-proposed 

pathways
• Proposed novel but 

chemically reasonable paths

8Balbuena 2001 JACS ; Balbuena 2000 Chem Phys Lett paper, 1997 J Phys Chem B paper Alex Schechter ; 2017 Stephen E. Burkhardt; J. Electrochem. Soc. and Blau, K. A. 
Persson et al., Chem. Sci., 2021 

Automatic retrieval of electrochemical reduction pathways of Li+-EC to LEDC



Despite decades of work, the identity of the major organic 
component of the Li-anode SEI is still controversial

Nature Chem., 2019, 11, 789-796 9

Major SEI organic component LEDC questioned
…synthesis and structural and spectroscopic 
characterizations of authentic LEDC and 
lithium ethylene mono-carbonate (LEMC)

FTIR, 1D and 2D solution and solid-state 
NMR spectroscopy suggest that common 
LEDC standards  are composed of lithium 
ethylene monocarbonate (LEMC). 



Using the Data-Driven First-principles Framework to track all reactions to LEMC

Xiaowei Xie, Evan Walter Clark Spotte-Smith, Mingjian Wen, Hetal D. Patel, Samuel M. Blau, and Kristin A. Persson, JACS 2021 143 (33), 13245-13258, DOI: 
10.1021/jacs.1c05807
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Overwhelming majority of reaction pathways to LEMC involve water

LEMC:
• Thermodynamically feasible, possible product in SEI
• Mechanistic explanations (confirming hypotheses from Nat. Chem paper) but also novel pathways
• Over 400 unique pathways identified but all but 8 involve hydrolysis hence water was found to be essential 

for LEMC formation and/or conversion of LEDC. 

Xiaowei Xie, Evan Walter Clark Spotte-Smith, Mingjian Wen, Hetal D. Patel, Samuel M. Blau, and Kristin A. Persson, JACS 2021 143 (33), 13245-13258, 
DOI: 10.1021/jacs.1c05807



Recovers Peled Bilayer SEI Model without any Fitted Parameters

Spotte-Smith, E.W.C., Kam, R.L., Barter, D., Xie, X., Hou, T., Dwaraknath, S., Blau, S.M., Persson, K.A., ACS Energy Letters, 2022.
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Recovers and explains the Peled bilayer structure of 
the SEI without any fitted parameters

Using accelerated simulations at elevated temperature, 
observe electrochemical instability and decomposition 
of  lithium ethylene dicarbonate (LEDC), lithium 
ethylene monocarbonate (LEMC)
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• Classical MD + templates describing 
each reaction (pre and post 
topologies), as implemented in 
LAMMPS

• Force-field information is updated 
when a reaction happens: 
geometries, bonds, charges and non-
bonded parameters

• Take solvation and residence times 
into account. 

• Rates are accelerated

Accelerated molecular dynamics (MD) with reactions enables observation of SEI formation

• Model: liquid mixture of 1M LiPF6/EC + amorphous silicon anode
• 12 reactions (9 for EC, 3 for PF6 decomposition)

L. Alzate-Vargas, S.M. Blau, E.W.C. Spotte-Smith, S. Allu, K.A. Persson, and J.-L. Fattebert, The Journal of Physical Chemistry C (2021)



Modeling diffusion and ionic conduction in SEI using polycrystalline LiF surrogate

Displacement magnitude of 
lithium ions after 10 ns

Grain boundaries vs. bulk using local measure of 
ordering: Atoms in light yellow are boundaries or 
interface

Atoms with larger 
displacement are at grain 

boundaries



A global reaction mechanism captures depth-dependent SEI species and thickness changes in time

Inorganic/organic solid phase SEI species consisting of Li2O, Li2CO3, LiF, LEDC is produced by the 
global reaction mechanism with gas phase species C2H4, CO and H2.

Experimentally, SEI thickness, solid-phase composition datasets via neutron reflectometry, and XPS 
measurements are available in the consortium.

Gen 2: 100 mV Gen 2F: 250 mV



The atomistically informed mechanism is validated against deconvoluted leakage 
currents in voltage-hold experiments

Leakage current
• Taken from potential-hold experiments
• Interpreted as “irreversible” component
• Decreases with increasing voltage hold
• Diffusion-limited response

SEI atomistically informed model
• Captures leakage current dynamics
• Predicts the correct voltage dependence
• Models rate-limiting e-(sei) transport

Leakage current is highly dependent 
on the e-(sei) diffusion coefficient, 

i.e., the SEI conductivity
• Predict electrolyte composition changes
• Quantify species production from side reactions

100 mV

100 mV
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Collaboration and Coordination

Category Institution Role

National 
Laboratories

Lawrence Berkeley National Laboratory First-principles high-throughput quantum mechanical calculations, 
machine learning and reaction network framework to automatically predict 
feasible SEI formation mechanisms.

National Renewable Energy Laboratory Continuum-level SEI model development on intercalating anodes with 
multiple levels of mechanistic complexity.

Oak Ridge National Lab Delineate SEI microstructure evolution and transport dynamics with anode-
surface interactions at the atomistic scale.

Entire Si Consortium Project The Si-HPC team regularly interacts with the entire Si consortium project 
to help advance the performance and understanding of Si.

University Colorado School of Mines Continuum-level SEI model development on non-intercalating anodes.



Remaining Challenges and Barriers

Improving species generation to efficiently develop reaction networks with novel additives
• Calculations to construct a reaction network in a new chemical space can cost tens of millions of CPU-hours
• Many calculations related to species that are not likely to form in SEI, creating severe inefficiency
• Use network products, machine learning to automatically identify most important species based only on initial 

electrolyte components
Machine learning solution-phase energy barriers for kinetically-informed reaction networks

• Kinetic barriers are essential to accurately identifying the most important SEI formation pathways
• Calculating barriers from first principles is very costly and difficult to automate
• Train equivariant graph neural network to predict energy barriers based on dataset of ~10,000 reactions

Accurate prediction of charge transfer rates
• SEI growth critically depends on conductivity
• Charge transfer mechanism through SEI poorly understood, especially due to limiting atomistic and mesoscale 

models
• Employ charge-constrained quantum chemistry to predict effective conduction rates from first principles



Proposed Future Research

Explore electrolyte oligomerization mechanisms
• Polymers believed to be important to Si SEI due in part to mechanical stability
• Identify expected oligomeric structures, formation mechanisms

• Determining mass transport mechanisms through the SEI
• High ionic conductivity critical to enable rapid charging and discharging at low overpotential
• Develop machine learning interatomic potentials to accurately model interactions in complex SEI layers
• Determine main transport modes, as well as variation in Li+ transport as function of SEI composition

Upscale additional reaction pathways to chemically relevant species measured in the Si consortium
• Simulate pathways that correspond to FEC decomposition, and subsequent LiF formation
• Determine additional pathways to common gas-phase species (e.g., H2, CO, CO2, CH4)

Validate the atomistic-scale informed and global reaction mechanism model on new experiments
• Capture irreversible capacity fade due to SEI reactions measured in reference performance tests
• Predict the measured gas-phase species concentrations as a function of voltage-hold and time
• Simulate predominate SEI species that correspond to measured XRD and SLD profiles

Any proposed future work is subject to change based on funding levels.



Summary
First-principles chemical reaction networks
Stochastic approach to network analysis automatically reveals SEI products
Microkinetic modeling based on network pathways explain observed trends in SEI formation and evolution
Designing methods to improve computational efficiency of network generation for more rapid deployment
Expanding network analysis to oligomerization of solvents and additives
Molecular dynamics of the SEI
Observed SEI growth by combining classical MD with accelerated chemical reaction mechanisms
Predicted lithium transport mechanism through polycrystalline LiF
Machine learning of electrochemical reactivity
Designed pretraining method that greatly improves model performance on small reaction datasets
Actively working on equivariant neural network model to predict solution-phase energy barriers
Opportunities for ML to improve understanding of transport through SEI
Continuum-level modeling
Two continuum-level SEI models are developed to predict complex SEI formation and determine source of measured 

leakage current.
Both models indicate that electron transport is a key feature that determines leakage current magnitudes.
Continuum-level models resolve spatial and temporal electrolyte and SEI species evolutions.
Future work includes extending models to validate on additional measurements and ensure model fidelity.



Critical Assumptions and Issues
• Electrolyte stability insights, SEI phase evolution, microstructure and spectroscopy data will provide valuable data for feedback and close integration with the 

existing DOE SCP program to ultimately advance our understanding of the Si anode reactivity and develop novel Si electrolyte formulations.

The lack of understanding of the range of viable electrochemical reaction mechanisms that may participate in the electrochemical reaction cascade responsible for the 
formation of the SEI necessitates a minimally biased data-driven approach to identify the critical reaction pathways that could be targeted for suppression or 
enhancement to obtain desirable SEI properties with a novel Si electrolyte formulation.

Such a data-driven approach should be able to leverage the power of machine learning/AI in order to tractably describe the inherent complexity of the SEI formation 
reaction cascade.

First-principles density functional theory (DFT) calculations with an implicit solvent environment, no explicit surface, and a robust description of the underlying 
electronic structure via a large basis set and advanced modern density functional are a sufficiently accurate foundation for our data-driven approach.

The shortest paths of a thermodynamic reaction network leading to a given SEI components are very likely to include all important reaction paths responsible for the 
formation of that species in a real battery cell SEI.

Kinetic refinement via the first principles calculations of reaction barriers and stochastic time propagation that captures pathway competition is necessary for 
quantitative identification of the dominant pathways responsible for the formation of individual SEI components. 

Key reactions identified by the LBNL team are reliable inputs to the multiscale models of ORNL, NREL, and CSM.
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